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Abstract—Gait recognition is a biometric technology that
recognizes the identity of humans through their walking patterns.
Existing appearance-based methods utilize CNN or Transformer
to extract spatial and temporal features from silhouettes, while
model-based methods employ GCN to focus on the special
topological structure of skeleton points. However, the quality
of silhouettes is limited by complex occlusions, and skeletons
lack dense semantic features of the human body. To tackle
these problems, we propose a novel gait recognition framework,
dubbed Gait Multi-model Aggregation Network (GaitMA), which
effectively combines two modalities to obtain a more robust
and comprehensive gait representation for recognition. First,
skeletons are represented by joint/limb-based heatmaps, and
features from silhouettes and skeletons are respectively extracted
using two CNN-based feature extractors. Second, a co-attention
alignment module is proposed to align the features by element-
wise attention. Finally, we propose a mutual learning module,
which achieves feature fusion through cross-attention, Wasser-
stein loss is further introduced to ensure the effective fusion of
two modalities. Extensive experimental results demonstrate the
superiority of our model on Gait3D, OU-MVLP, and CASIA-B.

Index Terms—Gait recognition, multi-model, feature fusion,
deep neural network

I. INTRODUCTION

Gait recognition has recently gained widespread interest as a
biometric technology that recognizes people by their walking
patterns. Unlike other biometrics like face, fingerprint, and
iris, gait can be captured from a distance in uncontrolled
settings without the cooperation of individuals. However, this
challenging technique still faces many difficulties, including
complex backgrounds, severe occlusion, unpredictable illumi-
nation, arbitrary viewpoints, and diverse clothing changes. The
appearance-based methods mainly extract temporal and spatial
features from silhouettes by 2D/3D CNN, Transformer, RNN,
and LSTM [1], [2], [3]. They focus on extracting features
from the whole gait sequence or adjacent frames, this makes
them perform poorly when facing lower-quality silhouettes.
The model-based methods [4], [5], [6], [7], [8] mostly take
clear and robust skeletons as the input, skeletons in a video
are mainly represented as a sequence of joint coordinates
which are extracted by pose estimators [9]. Benefiting from
the rapid development in pose estimation and the application
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Fig. 1. A brief visualization of our motivation. Skeleton can effectively
complement missing gait features in silhouette across various challenging
scenarios.

of Graph Convolutional Network (GCN) [10], recent model-
based methods could even show competitive results compared
to appearance-based methods.

However, modality aggregation in gait recognition is rarely
discussed [11]. First, as shown in Fig. 1(a), due to arbitrary
viewpoints, the left leg is missing in motion due to self-
occlusion, silhouettes can not provide complete gait infor-
mation in this case, but skeletons give a clear representation
of current motion state. Second, due to the problem of self-
occlusion in motion, the shape of the human body changes
considerably, and it is difficult to distinguish between the torso
and the limbs, as shown in Fig. 1(b), skeletons can guide the
posture of the human body to obtain a more robust gait repre-
sentation. Finally, silhouettes are easily obscured by complex
backgrounds and lose shape information, as shown in Fig. 1(c),
skeletons can complement missing gait features in silhouettes.
It can be observed that the silhouette retains the external body
shape information and omits some body-structure clues, and
the skeleton preserves the internal body structure information.
The two data modalities are complementary to each other, but
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Fig. 2. An overview of the proposed framework GaitMA for gait recognition. T&H represents the horizontal mapping and temporal aggregation. Concat and
Seq denote the features concatenate and separate, respectively.

they may not correspond, containing mismatched redundancy
and interference information. Therefore, how to better fuse
the silhouette and skeleton is a challenging problem, which
significantly influences the performance of obtaining a com-
prehensive representation of gait.

To achieve this goal, we propose a novel gait recognition
modality fusion framework, named GaitMA, which effec-
tively combines two modalities to obtain a more robust and
comprehensive gait representation for recognition. First, we
obtain joint/limb-based heatmaps by computing the Gaussian
distribution of skeletal points to enhance the robustness and
interoperability of the skeleton [12], [13]. This reduces the
modality differences between the skeleton and the silhouette.
Subsequently, we built a novel asymmetric CNN-based dual-
branch architecture to individually extract spatial-temporal gait
features from each modality. Second, to effectively integrate
the two modalities and fully utilize their information, the pro-
posed co-attention alignment module is introduced to mitigate
feature redundancy and interference. It achieves alignment
by calculating feature attention between elements, thereby
bringing the feature distributions of the two modalities closer
in the feature space. Finally, the mutual learning module is pro-
posed to facilitate the interaction between the two modalities.
This module effectively enriches discrete skeleton representa-
tions and complements the semantic information of silhouette
images. Additionally, Wasserstein loss [14] is introduced to
ensure comprehensive mutual learning of features between the
two modalities.

The main contributions of the proposed method are sum-
marized as follows: (1) We propose a novel gait recognition
modality fusion framework called GaitMA, which utilizes
a more comprehensive gait representation constructed from
both silhouettes and skeletons represented by joint/limb-based
heatmaps to achieve better recognition performance. (2) A
co-attention alignment module is proposed to improve the
efficiency and effectiveness of feature interaction. (3) We

propose a mutual learning module for feature fusion and
introduce Wasserstein loss to ensure effective fusion of the two
modalities. Experimental results demonstrate that our method
achieves superior performance on three dominant datasets, it
obtains an average Rank-1 accuracy of 66.1% on Gait3D,
95.9% on CASIAB, and 91.2% on OU-MVLP, respectively.

II. METHOD

In this section, we will describe the specific details of the
model implementation. As shown in Fig. 2, GaitMA can be
divided into five parts: joint/limb-based heatmap generation,
multi-model spatial-temporal encoding, co-attention alignment
module, mutual learning module, loss function.

A. Joint/limb-based Heatmap Generation

GCN is operated on an irregular graph of skeletons [5],
[6], which makes it difficult to fuse with other modalities
usually represented on regular grids. we represent each frame
of skeleton points as a joint/limb-based heatmap to improve
the effectiveness of modality combination [12], [13]. By
creating Gaussian heatmaps centered at each skeleton point
using coordinate triplets (xk, yk, ck), we obtain the joint-based
heatmap J with dimensions of K×H×W , where K represents
the number of joints, and H and W denote the height and width
of the frame. The formulation is expressed as,

Jkij = e−
(i−xk)2+(j−yk)2

2∗σ2 ∗ ck. (1)

The parameter σ regulates the variance of the Gaussian maps,
while (xk, yk) represents the spatial location of the k-th joint,
and ck represents the corresponding confidence score. We can
also create the limb-based heatmap L:

Lkij = e−
D((i,j),seg[ak,bk])2

2∗σ2 ∗min
(
Cak

, Cbk
)
. (2)

The limb indexed as k connects two joints, ak and bk. The
function D calculates the distance from the point (i, j) to the
segment [(xak

, yak
) , (xbk , ybk)]. Finally, the joint/limb-based



heatmap is derived by stacking all the heatmaps for each frame
along the K dimension.

B. Multi-model Spatial-temporal Encoding

To enhance the efficiency of spatial-temporal feature
extraction from gait information while minimizing model
size, we introduce an innovative asymmetric CNN-based
architecture[15] with a dual-branch structure. Opting for a
higher resolution of 128x88 in Silhouettes allows for the
capture of finer details, whereas a joint/limb-based 64x44
heatmap offers comprehensive spatial shape information with
reduced model complexity. The silhouette branch employs a
dense 3D-CNN to extract detailed, high-dimensional spatio-
temporal features. Concurrently, the skeleton branch supple-
ments feature absent in the silhouette representation, utilizing
a streamlined 2D-CNN for spatial feature extraction[16], [17].

This asymmetric approach effectively consolidates robust
features from both modalities and efficiently trims the model’s
parameter count. The silhouette features Ysil and the skeleton
features Yske are extracted from the silhouette feature extractor
and skeleton feature extractor, respectively. After that we
introduce horizontal mapping [18] and temporal aggregation
operations to generate feature representations.

C. Co-attention Alignment Module

Silhouette and skeleton features, inherently distinct modal-
ities, often contain mismatched, redundant, and noisy in-
formation, impeding detailed inter-modal interactions. Prior
research[16], [17] frequently overlooks this complexity, re-
sorting to basic summation, concatenation, or neglecting in-
formation redundancy and noise. Addressing this issue, our
proposed Co-attention Attention Model (CAM) leverages a
self-attention mechanism to align the feature distributions of
these two modalities more closely[19]. This alignment not only
facilitates inter-feature interaction but also enhances the overall
efficiency of model fitting.

As illustrated in Figure. 2, the input Ym is obtained by
channel-wise concatenating Ysil and Yske, two fully-connected
layers are designed to reduce the number of parameters and
achieve the information bottleneck effect. The overall formu-
lation can be expressed as:

Yscore = σ (τ (ω1Ym + b1)ω2 + b2) , (3)
Yalign = Yscore ⊗ Ym + Ym, (4)

ω1, ω2, b1, and b2 represent the weights and biases of two
fully-connected layers, respectively. The symbol τ denotes
the ReLU activation function, while σ represents the Sigmoid
function. ⊗ denotes the element-wise multiplication.

D. Mutual Learning Module

To optimize the utilization of features from both modalities,
we introduce the mutual learning module (MLM), leveraging
a cross-attention mechanism for the comprehensive fusion of
these modal features[19]. While the CAM facilitates interac-
tion between modal features, primarily aiming to harmonize
their distributional variances, our MLM extends beyond this

by ensuring a thorough integration. We employ a symmet-
ric dual-branch structure, allowing each modality to focus
on its intrinsic information while concurrently enriching the
other. This approach not only enhances the discrete skeleton
representation but also augments the semantic content of the
silhouette images, achieving a balanced and in-depth feature
interaction between the modalities.

The detailed process is shown in Figure. 2. Take one side
for example, assuming that Y1 and Y2 are the corresponding
feature representations of the two modalities, Y

′

1 is the output
after mutual learning. The formulation is expressed as:

Y
′

1 = Φ
(
Θ
(
Y1Y

T
2 /

√
d
)
Y2 + Y1

)
. (5)

Φ is the layer normalization and Θ denotes the Softmax
function, hyperparameter d denotes the scale factor.

E. Loss Function

To achieve optimal performance, we employ triplet loss
[22], cross-entropy loss, and Wasserstein loss [14] to train
GaitMA.

First, the network is trained to converge by optimizing the
classification space using cross-entropy loss which can be
formulated as:

Lce = − 1

N

N∑
i=1

log
eW

T
yi

xi+byi∑n
j=1 e

WT
j xi+bj

, (6)

where xi is the feature of the i-th sample, and its label is yi.
Second, triplet loss is proposed to enable the model to find

a more discriminative metric space by optimizing distances,
which can be defined as:

Ltri = φ [D (Fi, Fk)−D (Fi, Fj) +m] . (7)

φ is equal to max (α, 0), D (Fi, Fk) represents the Euclidean
distance between the features of sample i and sample k, m
denotes the margin for the triplet loss.

Finally, we introduce the Wasserstein loss to minimize the
distance between the two modalities, ensuring effective fusion
and accelerating the convergence of the model. Assuming
that the identity features follow a normal distribution, we
can utilize online estimations to calculate the means and
covariance matrices of the identity features:

Ỹ1 ∼ N (µ,Σ), Ỹ2 ∼ N (µ∗,Σ∗). (8)

The similarity between these two Gaussian distributions is
measured using the 2-Wasserstein distance, which results in
the Wasserstein loss:

Lw
△
= W2(Ỹ1, Ỹ2) = ||µ− µ∗||22 + ||Σ 1

2 − Σ∗ 1
2 ||2F . (9)

The joint loss function can be expressed as follows:

L = α1Ltri + α2Lce + α3Lw, (10)

where the hyper-parameters α1, α2 and α3 are balance factors
to weight the losses to each other, where α1 = 1.0, α2 = 0.1
and α3 = 0.1 respectively.



TABLE I
QUANTITATIVE COMPARISON OF GAIT RECOGNITION METHODS ACROSS THREE AUTHORITATIVE DATASETS, INVOLVING OUMVLP, GREW, AND

GAIT3D. THE BEST PERFORMANCES ARE IN BLOD, THE SECOND BEST METHODS ARE UNDERLINED.

Modality Method

Testing Datasets

Gait3D OU-MVLP CASIA-B
NM BG CL Mean

Rank-1 Rank-5 mAP mINP Rank-1 Rank-1

Sihouette

GaitSet(AAAI19)[1] 36.7 59.3 30.0 17.3 87.1 95.0 87.2 70.4 84.2
GaitPart(CVPR20)[2] 28.2 47.6 21.6 12.4 88.5 96.2 91.5 78.7 88.8
GaitGL(ICCV21)[20] 29.7 48.5 22.3 13.6 89.7 97.7 94.5 83.6 91.8

GaitBase(CVPR23)[21] 64.6 - - - 90.8 97.6 94.0 77.4 89.7

Skeleton

GaitGraph(ICIP21)[5] 8.6 - - - 4.2 86.4 76.5 65.2 76.0
GaitGraph2(CVPRW22)[6] 11.2 - - - 70.6 80.3 71.4 63.8 71.8

GaitTR(ES23)[7] 7.2 - - - 39.7 94.7 89.4 86.7 90.2
GPGait(ICCV23)[8] 22.4 - - - 59.1 93.6 80.2 69.3 81.0

Fusion BiFusion(MTA23)[16] - - - - 89.9 98.7 96.0 92.1 95.6
MMGaitFormer(CVPR23)[17] - - - - 90.1 98.4 96.0 94.8 96.4

Ours 66.1 81.2 55.4 34.7 91.2 98.2 96.7 92.8 95.9

TABLE II
THE MEAN RANK-1 ACCURACY (%) ON OUMVLP EXCLUDING THE

UNDER DIFFERENT SKELETON REPRESENTATIONS, EXCLUDING
IDENTICAL-VIEW CASES.

Skeleton Input Method Rank-1

Point BiFusion[16] 89.9
MMGaitFormer[17] 90.1

Joint-based heatmap Ours 90.8
Joint/Limb-based heatmap 91.2

III. EXPERIMENTS

A. Datasets

We evaluated our proposed method on three commonly used
datasets, including one outdoor dataset: Gait3D [23] and two
indoor datasets: CASIA-B [24], OU-MVLP [25].

Gait3D [23] is a large-scale gait dataset captured in the
wild, comprising 4,000 subjects and 25,309 sequences. The
dataset features 25,309 sequences acquired through camera
capture and provides four modalities: silhouettes, 2D and 3D
coordinates of joints, and 3D meshes. It is divided into a
training set containing 3,000 subjects and a test set consisting
of 1,000 subjects.

OU-MVLP [25] contains 10307 subjects, and each subject
includes 28 sequences obtained from 14 camera views. For
each view, each subject has 2 sequences (NM#01 and NM#02).
The sequences of the first 5153 subjects were used for training,
and the sequences of the remaining 5154 subjects were used
for testing.

CASIA-B [24] is one of the earliest widely used gait
datasets, consisting of 124 subjects. Each subject is repre-
sented with 11 views, and each view contains ten sequences.
These sequences are captured under three different walking
conditions: normal walking (NM), walking with a bag (BG),
and walking in a coat (CL). The dataset is divided into two
parts: the first 74 subjects are designated as the training set,
while the remaining 50 subjects constitute the test set.

B. Experimental Settings

For CASIA-B and OU-MVLP, the resolution of silhouettes
we take is 64×44. For Gait3D, the resolution of silhouettes we
take is 128×88. We use SGD as the optimizer for the training
model in both CASIA-B, OU-MVLP, and Gait3D. The initial
learning rate and the weight decay of the SGD optimizer as
0.1 and 0.0005. For CASIA-B, we train our model for 60k
with (8, 16) batch size, the learning rate is set to 1e-2 at the
20k iteration and 1e-3 at the 40k iteration respectively. For
OU-MVLP, the total iteration is 150k with (32, 8) batch size,
decaying the learning rate to 1e-2 and 1e-3 at the 50k and
100k iterations. For Gait3D, the batch size is set to (16, 4),
the total iteration is 60k.

C. Comparison with State-of-the-art Methods

We compare GaitMA to other state-of-the-art (SOTA) gait
recognition work, with comparative results detailed in Table I.
This comparison encompasses methods based on silhouette-
based, skeleton-based, and multimodal three mainstream ap-
proaches. Additionally, a focused comparison with other mul-
timodal methods, specifically in terms of skeleton representa-
tion, is presented in Table II. These comprehensive evaluation
results are sourced from the respective original publications.

Comparison with silhouette-based methods: GaitMA ex-
hibits superior performance on the CASIA-B, OU-MVLP, and
Gait3D datasets, underscoring the enhanced gait characteriza-
tion achieved through the integration of the skeleton feature.
This is particularly evident in challenging scenarios, such as
the real-world Gait3D dataset and the CASIA-B(CL) dataset,
where silhouette quality is compromised by complex back-
grounds, occlusions, and camera angles. The incorporation of
skeleton features in our method not only demonstrates signif-
icant improvements in these conditions but also provides an
effective resolution to these challenges. Notably, our method
outperforms the current leading GaitBase method by a margin
of 1.5%.

Comparison with skeleton-based methods: Our approach
surpasses current skeleton-based methods, which are hindered
by the limited accuracy of pose estimation algorithms and the



TABLE III
ABLATION STUDY ON THE EFFECTIVENESS OF EACH INDIVIDUAL MODULE

ON THE GAIT3D

Methods Sil J and L CAM MLM Lw Rank-1 mAP

Baseline ✓ 59.9 48.9
+ J and L ✓ ✓ 64.1 52.8
+ CAM ✓ ✓ ✓ 64.5 53.2
+ MLM ✓ ✓ ✓ ✓ 65.3 54.2
+ Lw ✓ ✓ ✓ ✓ ✓ 66.1 55.4

absence of spatial shape features, rendering them less com-
petitive, particularly on large-scale and real-world datasets.
Notably, our method achieves a 43.7% higher Rank-1 accuracy
on Gait3D compared to GPGait.

Comparison with multi-model methods: Diverging from
prevalent multimodal approaches that utilize coordinate points,
our method transforms joint points into joint/limb-based
heatmaps, enhancing skeleton feature representation. We
present a comparison of this method with point-skeleton
input methods and different heatmap forms on the OU-MVLP
dataset in Table II. Table I outlines our evaluation across the
full datasets. Here, we initially apply our multimodal strategy
to the real-world Gait3D dataset, subsequently achieving state-
of-the-art results on the large-scale OU-MVLP dataset. The
CASIA-B dataset, comprising 124 individuals in a simplistic
indoor setting, presents a risk of overfitting in large models,
which may degrade generalization in test scenarios, we believe
that CASIA-B is no longer suitable as a benchmark dataset.
Notably, our approach registers an improvement of 1.3% and
1.1% on the OU-MVLP dataset, surpassing BiFusion and
MMGaitFormer, respectively.

D. Ablation Study

To validate the efficacy of each component in GaitMA,
including joint/limb-based heatmaps, which provides robust
skeleton gait features, CAM and MLM for spatial and temporal
multi-model feature fusion, Wasserstein loss which makes
the distribution of fused features as similar as possible, we
conduct ablation studies the Gait3D dataset with results in
Table III. Furthermore, we demostrate the universality of our
method by applying it to two state-of-the-art silhouette-based
gait recognition models, the evaluation results of which are
displayed in Table IV.

Ablation Study of joint/limb-based heatmaps. To investi-
gate the impact of incorporating the skeleton branch, which
is represented by joint/limb-based heatmaps, we devise a
baseline model consisting solely of a single silhouette branch.
Remarkably, the inclusion of skeletons leads to a substantial
increase in accuracy by 3.8%, thus performing a significant
improvement in the gait recognition task.

Ablation Study of CAM&MLM. The integration of these
two modules improves the accuracy by 1.2% compared to
a simple element-wise addition approach. Specifically, CAM
yields a 0.4% improvement, while MLM achieves a 0.8%
improvement, demonstrating the effectiveness of each module.
The results highlight that the two modules we proposed
effectively facilitate the fusion of two modalities, resulting in
a more comprehensive and robust gait representation.

TABLE IV
UNIVERSALITY STUDY RESULTS ON THE GAIT3D DATASET

Method Modality Rank-1

GaitSet[1] Sihouette 36.7
GaitSet-MA Silhouette+Skeleton 48.2

GaitPart[2] Silhouette 28.2
GaitPart-MA Silhouette+Skeleton 45.8

Ours Silhouette+Skeleton 66.1

Ablation Study of Wasserstein loss. Wasserstein loss
makes the distribution of fused features as similar as possible
for each identity. When training GaitMA using Wasserstein
loss, the accuracy improved by 0.8%, demonstrating that the
introduction of Wasserstein loss ensures effective fusion and
accelerates the convergence of the model.

Universality of GaitMA. we demonstrate the universality
of our method by applying it to two state-of-the-art silhouette-
based gait recognition models, i.e., GaitSet[1], GaitPart[2].
We denote the models after applying our method as GaitSet-
MA and GaitPart-MA. The integrated model incorporates the
original structures of GatiSet and GaitPart to encode silhouette
features. Then, we introduce joint/limb-based skeleton feature
encoding to extract spatial shape information from the skeleton
modality and introduce CAM and MLM to realize the fusion
of multimodal feature information.

The results on the Gait3D datasets, as presented in Table IV,
demonstrate the effectiveness of our proposed method. It
exhibits significant improvements in Rank-1 accuracy, with
an increase of 36.7 to 48.2 for GaitSet and 28.5 to 45.8 for
GaitPart. This consistent enhancement is observed across both
models, highlighting the efficacy of our approach.

IV. CONCLUSION

This paper introduces GaitMA, a novel multi-modal gait
recognition framework that effectively combines two modal-
ities to obtain a more robust and comprehensive gait repre-
sentation for recognition. Compared to other multi-modal gait
recognition approaches, our method consistently demonstrates
superior performance across three mainstream datasets, both
indoor and outdoor, and marks the first application of multi-
modal methods in the wild. Specifically, the use of Heat-
skeletons representations provides clearer structural features
of the human body and exhibits enhanced robustness in
real scenarios. Furthermore, our well-designed Co-attention
alignment module and Mutual learning module, along with
the introduction of Wasserstein loss, effectively eliminate
redundant features between modalities and integrate efficient
gait representations. Our goal is to continue advancing the
study of multi-modal feature learning within the field of gait
recognition, thereby continuously propelling progress in gait
recognition.
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